Bayesian Modeling of Continuously Marked Spatial Point Patterns

نویسنده

  • Matthew A. Bognar
چکیده

Many analyses of continuously marked spatial point patterns assume that the density of points, with differing marks, is identical. However, as noted in the originative paper of Goulard et al. (1996), such an assumption is not realistic in many situations. For example, a stand of forest may have many more small trees than large, hence the model should allow for a higher density of points with small marks. In addition, as suggested by Ogata & Tanemura (1985), the interaction between points should be a function of their mark, allowing, for example, the range of interaction for large trees to exceed that of smaller trees. The aforementioned articles use frequentist inferential techniques, but interval estimation presents difficulties due to the complex distributional properties of the estimates. We suggest the use of Bayesian inferential techniques. Although a Bayesian approach requires a complex, computational implementation of (reversible jump) MCMC methodology, it enables a wide variety of inferences (including interval estimation). We demonstrate our approach by analyzing the well known Norway spruce dataset.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring the spatial patterns of three prevalent cancer latent risk factors in Iran; Using a shared component model

Background and aims: The aim of this study was the modeling of the incidence rates of Colorectal, breast and prostate cancers using a shared component model in order to explore the spatial pattern of their shared risk factors (i.e., obesity and low physical activity) affecting on cancer incidence, and also to estimate the relative weight of these shared components. Methods: In this study,...

متن کامل

TESTING FOR “RANDOMNESS” IN SPATIAL POINT PATTERNS, USING TEST STATISTICS BASED ON ONE-DIMENSIONAL INTER-EVENT DISTANCES

To test for “randomness” in spatial point patterns, we propose two test statistics that are obtained by “reducing” two-dimensional point patterns to the one-dimensional one. Also the exact and asymptotic distribution of these statistics are drawn.

متن کامل

Spatial Regression for Marked Point Processes

In a wide range of applications, dependence on smoothly-varying covariates leads spatial point count intensities to feature positive correlation for nearby locations. In applications where the points are “marked” with individual attributes, the distributions for points with varying attributes may also differ. We introduce a class of hierarchical spatial regression models for relating marked poi...

متن کامل

Bayesian Analysis of Censored Spatial Data Based on a Non-Gaussian Model

Abstract: In this paper, we suggest using a skew Gaussian-log Gaussian model for the analysis of spatial censored data from a Bayesian point of view. This approach furnishes an extension of the skew log Gaussian model to accommodate to both skewness and heavy tails and also censored data. All of the characteristics mentioned are three pervasive features of spatial data. We utilize data augme...

متن کامل

Spatial count models on the number of unhealthy days in Tehran

Spatial count data is usually found in most sciences such as environmental science, meteorology, geology and medicine. Spatial generalized linear models based on poisson (poisson-lognormal spatial model) and binomial (binomial-logitnormal spatial model) distributions are often used to analyze discrete count data in which spatial correlation is observed. The likelihood function of these models i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005